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Abstract

Excel is a pervasive yet often complex tool, particularly for novice
users, where runtime errors arising from logical mistakes or misin-
terpretations of functions pose a significant challenge. While large
language models (LLMs) offer promising assistance by explaining
formula errors, the automated correction of these semantic runtime
errors remains an open problem. A primary challenge to advancing
models for such scenarios is the severe lack of high-quality, compre-
hensive datasets for training and rigorous evaluation. This paper
addresses this gap by introducing a novel approach for constructing
a benchmark dataset specifically designed for Excel formula repair.
We propose a data generation pipeline, which leverages a small set
of curated seed samples from online forums to synthetically expand
the dataset. Our pipeline integrates few-shot prompting with LLMs
and employs a robust LLM-as-a-Judge validation framework, com-
bined with execution-based checks to ensure the correctness and
semantic fidelity of the generated data. This process produced a
benchmark dataset of 618 high-quality samples, covering common
runtime errors. Furthermore, we propose a context-aware baseline
technique for Excel formula repair that utilizes LLMs to leverage
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both the faulty formula, and relevant spreadsheet context. We eval-
uate the performance of various LLMs (GPT-40, GPT-4.1, Phi-3,
Mistral) on our newly generated benchmark using execution-based
metrics. Our analysis demonstrates the dataset’s quality through
manual annotation and provides insights into error and function
distributions. The proposed generation methodology is highly scal-
able and can be readily adapted to create evaluation benchmarks
for similar code repair tasks in other low-resource programming
languages.
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1 Introduction

Spreadsheets (e.g., Microsoft Excel, Google Sheets) are among the
most widely used end-user programming platforms, with hundreds
of millions of users worldwide [2, 16]. They empower users—often
without formal programming backgrounds—to manipulate and an-
alyze data through formulas composed on a tabular grid. However,
writing correct and robust formulas remains a significant challenge.
Small mistakes such as incorrect cell references, missing arguments,
or improper function nesting can break computations or lead to
incorrect results. These errors may surface as syntax problems, logi-
cal bugs, or runtime failures (e.g., #DIV/0!, #REF!), and diagnosing
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them is often non-trivial for non-programmers [12]. This highlights
the need for tools that assist users in automatically detecting and
fixing errors in their formulas.

Automated Program Repair (APR) has been extensively stud-
ied for general-purpose programming languages (GPLs) like Java,
Python, and C++ [9, 20]. These systems typically rely on well-
structured code with modular functions and comprehensive test
suites, which support static analysis and test-driven repair strate-
gies. In contrast, spreadsheet formulas present unique challenges.
They operate over structured data objects (e.g., cell ranges, tables)
and often lack modular abstractions or formal specifications. Writ-
ing correct formulas requires not just syntactic fluency but also
a clear understanding of how to reference and manipulate tabu-
lar data. Errors often arise from misinterpreting layouts, incorrect
argument choices, or misunderstanding function semantics.

Prior work on APR in spreadsheets (henceforth referred to as
Excel formula repair) has largely focused on syntactic repair, often
without leveraging the spreadsheet context. For example, LaMi-
rage [3] uses grammar-based candidate generation and a neural
ranker to fix syntax errors. A more recent system, RING [4] ap-
plies prompting techniques and error localization to formula text to
suggest potential repairs to formula errors. FLAME [15], a domain-
specific fine-tuned model has shown impressive performance on
formula synthesis using compact transformers trained on Excel-
specific corpora. However, none of these approaches consider tabu-
lar data. Also, most of these approaches remain focused on syntax
repair, not semantic correctness.

Importantly, our analysis of real-world user queries on forums

like Stack Overflow and Excel support channels reveals that a ma-
jority of formula issues are semantic rather than syntactic. These
issues often manifest as runtime errors and require context-aware
reasoning over both formula logic and spreadsheet data for effec-
tive resolution. Current Excel formula repair approaches do not
address runtime errors. Moreover, existing datasets typically in-
clude only isolated formula pairs—incorrect and corrected—but
omit the spreadsheet context necessary for modeling these seman-
tic repair tasks. There isn’t an existing dataset that can be used to
train and evaluate a repair model for runtime errors.
Our Contributions. To address this gap, we introduce FOREP-
BencH (Formula Repair Benchmark), a new benchmark and dataset
for context-aware Excel formula repair. Our main technical contri-
butions are:

(1) Excel Formula Repair Dataset: We present FOREPBENCH,
the first large-scale dataset of Excel formula repair examples
for runtime errors. Each example includes spreadsheet con-
text (cell values, headers), a broken formula, its corrected ver-
sion, and a user utterance expressing intent. The dataset con-
tains 618 examples and spans 5 runtime error types: #DIV/0!,
#N/A, #NAME?, #REF!, and #VALUE!.

(2) Synthetic Data Generation and Validation Pipeline: We
introduce a data generation pipeline that bootstraps from
a small number of high-quality samples and produces re-
alistic examples for training and evaluating models for Ex-
cel formula repair. We validate each repaired formula both
via execution (to confirm correctness) and through a chain-
of-thought LLM judge (to ensure semantic alignment with
intent), resulting in high-quality examples.

(3) Baseline Approach for Excel Formula Repair: We pro-
pose a method that leverages a large language model and
incorporates both formula text and spreadsheet context for
error correction. We also report the performance of the base-
line approach on FOREPBENCH and seed dataset using various
state-of-art proprietary and open-source models.

We have made FOREPBENCH available as a resource for further
research on Excel formula repair and related tasks. 1.

2 Related Work

2.1 LLMs for Code Generation

Large Language Models (LLMs) have emerged as a powerful para-
digm for code generation. Early work such as GPT-3 [5] showed
that scaling autoregressive transformers in a few-shot setting can
yield impressive results in synthesizing code from natural language
prompts. This breakthrough spurred the development of models
fine-tuned specifically on code, substantially improving both flu-
ency and correctness. OpenAI’s Codex [7] adapts the GPT archi-
tecture with fine-tuning on a massive corpus of public code repos-
itories and supports a wide range of programming tasks—from
simple completions to complex algorithmic problems. Salesforce’s
CodeGen [21] and Meta AT’s InCoder [18] introduced novel pre-
training objectives, including span-masking and infilling, enabling
the generation of code that integrates naturally within surrounding
context.

Hybrid approaches have also been explored. DeepMind’s Alpha-
Code [17] combines LLMs with search-based techniques, achieving
competitive results on programming competitions. Other models,
like CodeT5 [24], leverage structural information by incorporating
representations of abstract syntax trees (ASTs) [25], improving syn-
tactic accuracy and semantic consistency. In our experiments, we
evaluate our formula repair approach using four recent LLMs as
the backbone: GPT-40 [13], GPT-4.1 2, Phi-3 [1], and Mistral [14],
through prompt engineering tailored to the Excel formula repair
task.

2.2 Excel Formula Generation and Repair

Research on code generation and repair in the context of Excel
formulas remains relatively limited. One major line of work focuses
on the NL-to-Formula (NL2F) task, which adapts the Text2SQL
paradigm to Excel formula generation [26]. SpreadsheetCoder [8]
enhances formula prediction by incorporating spreadsheet con-
text, improving the accuracy of generated formulas. FlashFill [11]
pioneered example-driven formula synthesis, enabling users to gen-
erate formulas via input-output examples. LaMirage [3] targets
the “last-mile” repair problem by fixing near-correct formulas us-
ing symbolic and neural techniques, but it does not leverage the
surrounding spreadsheet data for deeper semantic reasoning.
Recent work such as FLAME [15] introduced a lightweight trans-
former model for formula completion and repair, trained specifically
on Excel formulas. While effective, FLAME operates solely on for-
mula syntax and does not incorporate the spreadsheet context and
natural language input, limiting its applicability in user-facing or

!https://github.com/microsoft/prose-benchmarks/tree/main/FoRepBench
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intent-driven tasks. In contrast, our dataset includes natural lan-
guage utterances alongside spreadsheet context, faulty formulas,
and ground-truth repairs. This enables the study of broader prob-
lem settings—ranging from NL-to-formula generation to semantic
formula repair—not just syntactic correction or last-mile fixes.
Using LLM-as-a-judge for synthetic data evaluation has emerged
as an active research area across text generation [10, 19, 23] and
code generation tasks [6, 27]. Complementary to our work, Singh
et al. [22] proposed an automated method for validating synthetic
NL-to-formula datasets using LLMs. Their pipeline classifies and
filters low-quality synthetic annotations to improve fine-tuning
performance. We adopt a similar idea in our generation pipeline
by incorporating LLM-based validation to ensure both execution
correctness and semantic fidelity of generated examples.

3 Methodology

This section describes our proposed methodology for synthetic
benchmark generation, which we refer to as BOOTSTRAP GENERA-
TOR. Each data point in the benchmark, which represents a formula
repair scenario, must include the following fields:

(1) Tabular Data: The spreadsheet context where the user en-
countered a runtime error.

(2) Faulty Formula: A formula that results in a runtime error.
In this work, we focus on #N/A, #REF!, #VALUE!, #¥NAME?,
and #DIV/0! errors.

(3) Correct Formula: A formula that resolves the runtime error
and is also consistent with the user intent expressed in the
utterance.

(4) Utterance: A natural language query describing a user’s
problem and/or task that they are attempting to solve with
their formula.

(Refer to Figure 3 for an example data point for Excel formula
repair.)

Our data generation method relies on a small set of high quality
examples to generate a larger dataset. In Section 3.1, we describe
how we curated a set of seed samples. Then in Section 3.2, we
describe our synthetic data generation approach which creates
FOREPBENCH.

3.1 Seed Data Curation

To create a seed dataset for bootstrap generation, we developed a
systematic approach to collect and process data from online forums
where users discuss Excel-related problems and solutions. This
section describes the methodology used to gather relevant seed
data and prepare it for use in our synthetic data generation pipeline.

3.1.1 Dataset Creation. Figure 1 shows an overview of our seed
dataset creation approach. We scraped posts from the MrExcel®
forum, a well-established platform where users frequently seek
assistance with Excel formulas and share solutions. Next, we filtered
posts to ensure that they had all the required elements for our
dataset, i.e. a faulty formula, table context, and the correct formula
(we used a reply being marked as “accepted answer” on the forum
as an indicator). Once relevant posts were identified, we extracted
the table context and formulas. Users often share tabular data and

3https://www.mrexcel.com/
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formulas in various formats, including plain text, code blocks, or
specialized markup. We employed parsing techniques to accurately
extract the exact text of the formulas used in cells, the data values
in cells which may be referenced by the formulas, and any error
messages or codes displayed by Excel, as reported by the users.
Using the extracted data, we reconstructed the structure of the
Excel workbooks by identifying different worksheets mentioned
in the posts, mapping formulas and values to their corresponding
cell addresses, and understanding the relationships between cells,
such as which cells are referenced by a formula. Since we want to
create a dataset focused on runtime errors, we needed to identify
posts where the faulty formula resulted in a runtime error. We
simulated the evaluation of the extracted formulas using Calc.ts®*,
an Excel formula evaluation engine capable of interpreting and
calculating the results of formulas outside of the Excel application
environment. This allowed us to detect the type of errors produced
by the faulty formulas and test the corrected formulas to confirm
that they resolve the errors. We retained posts for 5 runtime error
types: #N/A, #REF!, #VALUE!, #NAME?, and #DIV/0!. For every
post that passed, we added one sample to our dataset containing:
1) faulty formula, 2) correct formula, 3) table context, 4) user query,
5) runtime error type, and other metadata.

3.1.2  Manual Verification and Correction. Although we applied
several automated filtering and validation steps, not all samples met
our requirements for high-quality seed samples. This is because 1)
a formula that was accepted by a user on the forum as a solution
and did not result in a runtime error when executed through Calc.ts
could still be semantically incorrect, and 2) The table extracted by
our scripts could contain data that is not part of the user’s intended
table context. For example, in one of the samples, a column with the
expected outputs was included in the context. A good benchmark
sample should test a model’s formula repair capability without
leaking information.

To address these limitations, we conducted two rounds of re-
views to verify and correct the seed data. In the first round, each
sample was assigned to one annotator. The annotator was asked to
comment on the following:

(1) Does the correct formula meet the requirements expressed
in the utterance?

(2) Does the faulty formula produce the required error type?

(3) Is the table accurately extracted from the post?

(4) Is the table consistent with the user utterance?

Only a third of the samples annotated in the first round met all
the requirements. We therefore had a second round of annotations
to verify the labels in the first round, and if necessary, edit the
samples. In this round, the samples were reviewed again by a group
of three or more annotators. If they agreed that the sample met
the above requirements, it was added to the final seed dataset. If
not, the sample was edited based on the comments from the first
round. In some instances, the user utterance was edited to make
it more explicit. In some cases, the formula crawled automatically
was not correct for the user’s intent and was manually replaced
with a truly correct formula. Some examples were deleted if they

4https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-
web/?msockid=38b38871134a6f5806f59df512676e0c
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Figure 1: Overall workflow illustrating the sequential steps in the seed data curation process. MrExcel forum is scraped to get
posts. Filters are used to identify posts containing table context, faulty formula and correct formula. The page is parsed to
extract the required data. The faulty and correct formula are evaluated using Calc.ts. Samples where they execute as expected

are added to the dataset. Finally the dataset is manually verified.

were too ambiguous or if the error was too trivial. This process
ensured that for the samples in the seed dataset,

(1) The table contains the necessary information for the repair,
and not rows with the desired output that might leak infor-
mation.

(2) The user utterance clearly indicates what the user wants to
accomplish.

3.2 Bootstrap Generation

Automatic extraction of data from forums as discussed in Section
3.1.1 led to incomplete and inaccurate samples, and manual valida-
tion and correction is not scalable to a large number of samples. In
this section, we introduce our BOOTSTRAP GENERATOR approach,
using which we created FOREPBENCH, a large scale benchmark
dataset for Excel formula repair focused on runtime errors. Figure
2 shows an overview of the pipeline. We start with a small number
of high-quality samples, i.e. seed samples (See Section 3.1), and
generate a larger benchmark dataset synthetically.

The development of the synthetic data generation pipeline was
guided by three primary objectives:

(1) Ensure proper formatting of all synthetic data.

(2) Verify the correct execution of all synthetic formulas in Excel.

(3) Ensure that the data is semantically consistent

(4) Assess the quality of the data to ensure appropriate difficulty
levels, function coverage, etc.

The first step in the pipeline involves generating synthetic sam-
ples using few-shot prompting. Following the generation phase,
it is essential to validate the synthesized samples to ensure both
correctness and quality. This led to the creation of FOREPBENCH,
constructed through the following two-stage validation process.
The complete pipeline consists of these three steps, as described
below.

3.2.1 Data Generation with Few-Shot Prompting. We apply
one-shot prompting to generate synthetic samples utilizing every
sample from our seed data. This approach involved injecting each
data point from our seed data into its own text prompt and subse-
quently generating new data based on that prompt. This method
proved to be the most effective in our validation experiments which
have been discussed in Section 3.1.

Fewshot-learning Setup Optimization. To generate synthetic sam-
ples, we initially employed a zero-shot prompt to evaluate the LLM’s
capability to generate samples without grounding data. We gener-
ated 125 data points per error type, and the key observations were
as follows:

(1) Simple Data: The generated Excel formulas and tables were
relatively simple, e.g., dividing an arbitrary cell value by 0
to produce a #DIV/0! error.

(2) Lack of Diversity: The resulting synthetic data exhibited
minimal semantic and syntactic diversity. For a given error
type, the model predominantly produced data points with
minor differences to the table data or variables in the formula.

Despite extensive prompt modifications to address the aforemen-
tioned issues, the problems persisted. Consequently, the next phase
involved incorporating real-world grounding data into our prompts
as few-shot examples for generating new data.

Next, we explored few-shot prompting as a more promising
approach for creating a dataset with more diversity and complex
examples. Our validation experiments showed that 1-shot prompt-
ing produced more samples that passed our validation tests (§3.2.2
and §3.2.3) compared to zero-shot. Each data point from the seed
dataset was used to produce multiple new samples.

3.2.2 Validating Generations executing Excel formulas. To
verify correctness, we utilized a tool called Calc.ts®, designed to

Shttps://www.microsoft.com/garage/wall- of-fame/calc- ts-in-excel-for-the-web/
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Figure 2: Pipeline overview of the synthetic data generation system.

check Excel formulas against the corresponding spreadsheet data.
We ensured that each generated “correct” formula did not result in
an error and that faulty formulas produced the appropriate runtime
error. After confirming correctness, we evaluated the quality of
the generated data using an LLM-as-a-judge framework. Samples
that passed both correctness and quality checks were subsequently
added to the final dataset.

3.2.3 Validating Generations with LLM-as-a-Judge Approach.

To ensure reliability of the generated synthetic data, the LLM-judge
approach we implemented leverages Chain-of-Though (CoT) rea-
soning for systematic assessment. We refer to this model as LLM
VALIDATOR. In this work, the LLM-judge systematically analyzes
each repaired formula by first determining whether it resolves the
original runtime error in the synthetic data. It then assesses whether
the formula aligns with the user’s intent, considering the spread-
sheet context and any provided utterance. It is also prompted to
assess and annotate the difficulty level of the repair, which we use
for analysis of our proposed benchmark in Section 6.1.

4 Formula Repair

As discussed in Section 1, there has been scarcity of research done
on systems capable of Excel formula repair for formulas that result
in semantic errors, rather than merely correcting syntax mistakes.
A key challenge in Excel formula repair lies in incorporating the
relevant spreadsheet context. Unlike general-purpose programming
languages, Excel formulas are tightly coupled to tabular data lay-
outs, and the correct repair often depends on values, ranges, headers,
or even user-entered text elsewhere in the spreadsheet.

To address this, we propose a baseline solution that not only
leverages the buggy formula and any available auxiliary informa-
tion (such as natural language descriptions), but also uses the con-
text present within the spreadsheet. Our system thereby enables
context-aware formula repair that handles both syntactic and se-
mantic errors. We further utilize our baseline repair pipeline to

evaluate FOREPBENCH, thereby demonstrating its practical rele-
vance and showcasing how such controlled benchmarks can effec-
tively approximate real-life formula repair scenarios encountered
in production spreadsheets.

4.1 Baseline Repair Technique

The baseline method follows a structured pipeline that makes a
single call to an LLM, designed to efficiently process faulty Excel
formulas and generate repaired versions along with explanations.
Figure 2 illustrates the single-call LLM solution used for evaluating
the benchmark. The system takes as input a faulty formula, the
corresponding runtime error, and an optional user utterance. Since
spreadsheet tables can be large, passing the entire spreadsheet as
context is impractical due to LLM token limitations. To address this,
we identify the nearest table associated with the faulty formula
and extract its header along with a few sample rows to provide as
context. This enables the LLM to receive the necessary contextual
information to generate accurate repairs.

Once the relevant spreadsheet context is retrieved, a structured
prompt is constructed. This prompt consists of four key elements:
the extracted spreadsheet data context, the faulty formula, the run-
time error, and an optional user utterance (if provided). In this work,
a standardized prompt template is used to maintain consistency,
and it included instructions that guide the LLM in repairing Excel
formulas while ensuring a meaningful explanation is generated.
The constructed prompt is then passed to the LLM, which processes
the input and attempts to generate a corrected formula along with
a natural language explanation of the fix. The repaired formula is
subsequently evaluated by comparing it with the ground truth cor-
rect formula from the benchmark dataset. This comparison helps
determine whether the generated repair successfully resolves the
runtime error while maintaining the intended logic of the original
formula. This structured pipeline used in this work provides a con-
sistent and repeatable methodology for evaluating formula repair
performance.
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ﬂabular Data \
II 695172-Sale Polo Blue XL Shirt 695172 #N/A

Faulty Formula
VLOOKUP(B1,MID(A:A,8,15),1,FALSE)

Correct Formula
SUBSTITUTE(VLOOKUP(B1&"*",A:A,1,FALSE),B1&"-","")

Utterance

| have a number followed by the description in Col A. | have tried to
set up a Vlookup to lookup the description pertainingto the number.

Figure 3: An example from the seed dataset where the
faulty formula applies substring extraction, while the cor-
rect formula uses wildcard matching and string substitu-
tion—requiring multiple semantic edits to fix.

ﬂbular Data

ltem Price
Apple 1.2

Faulty Formula
VLOOKUP(A10, A2:B7, 2, FALSE)

Correct Formula
IF(COUNTIF(A2:A7, A10) >0,

Banana 0.5
VLOOKUP(A10, A2:B7, 2, FALSE),
Cherry 2
3 "Not found")
Fig 2.5
Utterance

Grape 2.8 X )
| am trying to use VLOOKUP to find

the price of an item, but | keep
getting an #N/A error. What am |
doing wrong?

L 0NV s WN
o
@
-
[0

Item to Find Found Price

O Mango HN/A

Figure 4: An example from FOREPBENCH. The faulty for-
mula does not handle the exception when the value A10 is
not present in the table. The correct formula fixes this by
checking if the value exists, and returning "Not Found" if it
doesn’t.

5 Experimental Setup

We applied BooTsTRAP GENERATOR(Section 3.2) to generate our
dataset using GPT-40 as the LLM. A temperature of 0.64 is used to
promote diversity among generated examples. In total, we gener-
ated 1095 samples, out of which 618 passed LLM VALIDATOR. Table
1 shows the error-wise breakdown. We conducted analysis to as-
sess the characteristics and quality of our dataset. We address the
following research questions:

RQ1 Does the data distribution in the FOREPBENCH match real
world data? How does the generated data look in terms of
distribution across errors and functions?

RQ2 What is the quality of the FOREPBENCH based on human
judgments?

RQ3 What is the performance of the proposed baseline repair
approach across a range of state-of-the-art proprietary (
ie, Gpt-4.1, Gpt-40) and open-source LLMs (i.e, Phi-3,
Mistral) on FOREPBENCH?

RQ4 What is the cost of generating FOREPBENCH? How many
LLM calls are needed?

Difficulty Level
16 === Easy
== Medium
" Hard
12
g
S0
s
El
g 8
[
6
4
. l I I
0 - |
#NIA #VALUE! #NAME? #DIV/0! #REF!

Error Type

Figure 5: Distribution of sample difficulty levels by Excel
error type in the seed dataset. Difficulty levels were assigned
by LLM VALIDATOR.

To answer RQ1, we present the difficulty and function distribu-
tions for both the seed dataset and FOREPBENCH. The difficulty of
each sample was determined by LLM VALIDATOR. It was prompted
to assign one of 3 difficulty ratings to the sample based on how
complex the Excel repair task was - easy, medium, and hard.

To answer RQ2, we recruited 2 annotators to assess the quality
of the generated data before it was passed through LLM VALIDA-
TOR. Due to the complexity of the task and limited resources, two
teammates with extensive familiarity with the task and deeper
understanding of the nuances served as annotators in this study.
They annotated a subset of 24 samples from the synthetic dataset.
They were asked to perform the same task as LLM VALIDATOR in
Section 3.2, i.e. check the correctness and consistency of the table
context, faulty formula, correct formula, and utterance.

5.1 Metrics

To evaluate the performance of the baseline repair technique across
datasets, we employ the following execution-based metrics:

Syntax Validity: We first check whether the repaired Excel
formula can be successfully compiled. If the formula parses without
any compilation errors, it is considered syntactically valid; other-
wise, it is marked as invalid.

Can Execute: This metric verifies whether the repaired formula
can be successfully executed on the spreadsheet without triggering
any runtime errors (e.g., #VALUE!, #REF!, #DIV/0!, etc.). A suc-
cessful execution without runtime errors is considered a success;
otherwise, it is considered a failure.

Execution Match: After execution, we compare the output pro-
duced by the repaired formula against the output of the ground-
truth (correct) formula. If the outputs match exactly the repair is
considered correct under this metric.

6 Results
6.1 ROQ1: Data Distribution and Comparison
with Seed Dataset

Figures 5 and 6 display the distribution of difficulty levels across
error types in the seed dataset and FOREPBENCH, respectively. Com-
pared to the seed dataset, the samples in FOREPBENCH are skewed
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Figure 6: Distribution of sample difficulty levels by Excel
error type in FOREPBENCH. Difficulty levels were assigned
by LLM VALIDATOR.

Error Type Samples Generated Samples passed by LLM VALIDATOR

#VALUE! 241 64
#N/A 329 140
#REF! 16 12
#NAME? 222 158
#DIV/0! 287 244

Table 1: The table shows the number of generated samples
that remained after LLM VALIDATOR filtered out low quality
samples. Overall, 56% of all generated samples pass LLM
VALIDATOR.

toward simpler formula repairs. This suggests that BOOTSTRAP
GENERATOR tends to produce less complex scenarios, as it’s hard
to synthesize examples that both execute successfully and pass the
LLM-based quality filter LLM VALIDATOR. Figures 3 and 4 illustrate
this disparity in complexity. Both examples have faulty formulas
with the VLOOKUP function. In the example from the seed dataset
in Figure 3, the user wants to extract a part of a string from a cell,
a semantically complex scenario. In a simpler (more syntactic) sce-
nario from FOREPBENCH shown in Figure 4, the user only needs to
handle an exception when the value being looked up isn’t present
in that cell range.

Tables 2 and 3 present the distribution of Excel functions in
the seed dataset and FOREPBENCH respectively, broken down by
error type. We include the top 10 functions that appear in the
most examples in this dataset. Comparing the distribution with
Table 2, FOREPBENCH frequently has the functions AVERAGE and
CONCATENATE which the seed dataset did not. This indicates that
BooTSTRAP GENERATOR creates samples diverse from the fewshot
examples. Some trends remain consistent between both datasets, for
example VLOOKUP, INDEX, and MATCH being the most common
functions for #N/A error.

6.2 RQ2: Synthetic Dataset Quality Based on
Human Evaluation

Table 4 reports Cohen’s Kappa scores measuring pairwise agree-
ment between the two human annotators and between each annota-
tor and LLM VALIDATOR. The results indicate moderate agreement
among human annotators (Kappa: 0.60), suggesting some subjec-
tivity in evaluating the quality of generated samples. Annotators
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Utterance
I'm trying to calculate the
total sales by summing the

Tabular Data

A

jBll Product SalesQl Sales Q2 Total Sales i

b3l Apples 100 200 HVALUE! values in two columns, but
EW Bananas 150 250 nan I'm getting a #VALUE! error.
I8 Oranges nan 300 nan Canyou help?

Correct Formula

Faulty Formula
SUM(B2, C2)

SUM(B2, C2) + A2

/

Figure 7: Example from the synthetic dataset before being
passed through LLM VALIDATOR. where annotators disagree
on validity. The formula includes cell A2 in a summation,
but A2 contains a string. One annotator considers it valid,
interpreting it as a possible typo, while the other marks it as

invalid.
/I’abular Data

I'm trying to calculate the
total cost by multiplying

il [tem Quantity Unit Price Total Cost the guantity and unit price,
PR Apples 10 2.5 nan but | keep gettinga

EJl Oranges 5 Three #VALUE! #VALUE! error. Canyou
help me fix the formula?

Utterance

Faulty Formula
B3*C3

Correct Formula

VF(ISNUMBER(CS),BB*CS,"#VALUE!“) /

Figure 8: Example from FOREPBENCH where human annota-
tors disagree with LLM VALIDATOR regarding validity. In this
case, the "Unit Price" column contains the string "Three" in-
stead of a numeric value. While annotators label the example
as invalid, LLM VALIDATOR incorrectly accepts it, highlight-
ing its limitations in filtering out unrealistic inputs.

were asked to assess whether the corrected formula appropriately
fixes the faulty one and satisfies the intended user operation, and
whether the example reflects a realistic spreadsheet scenario. Dis-
agreements often stemmed from differing interpretations of what
constitutes a plausible Excel table. For instance, in the example
in Figure 7, where a formula attempted to multiply a string by
a number, one annotator interpreted it as a plausible user typo,
while the other considered it unrealistic. This suggests the need
for more concrete annotation guidelines with detailed examples for
the annotators.

Agreement between LLM VALIDATOR and each annotator was
also moderate (0.42 for both annotators) but notably lower than
inter-annotator agreement. In most cases, LLM VALIDATOR accepted
examples that were consistent in formula execution but unrealistic
in context. For example, in the sample in Figure 8, the table has
textual values like “three” in a numeric column. While LLM VAL-
IDATOR deemed such examples valid based on logical consistency,
human annotators rejected them due to implausible table seman-
tics. These results imply that while LLM VALIDATOR is effective
at rejecting invalid or illogical formula pairs, it lacks sensitivity
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Error Type AND FIND IF INDEX LEFT MATCH MID MIN SUM VLOOKUP
#DIV/0! 0 0 1 0 0 0 0 2 1 0
#N/A 1 0 2 8 2 10 1 0 1 7
#NAME? 0 0 1 0 1 0 0 0 0 0
#REF! 0 0 0 0 0 0 0 0 0 0
#VALUE! 2 4 12 2 2 3 3 1 2 0

Table 2: This table reports the frequency of the top 10 most frequent functions in the seed dataset (N=59), split by error type.

Darker color signifies higher frequency within each row.

Error Type AVERAGE AVRG CONCATENATE COUNT IF INDEX MATCH SUM VALUE VLOOKUP
#DIV/0! 3 0 0 4 1 0 0 9 0 0
#N/A 1 0 0 0 1 25 28 1 0 66
#NAME? 2 4 0 0 2 0 0 1 0 0
#REF! 0 0 0 0 0 0 0 1 0 2
#VALUE! 9 0 16 0 10 2 3 11 4 0

Table 3: The table reports the frequency of the top 10 most frequent functions present in FOREPBENCH (N=618), split by
error type. Darker color signifies higher frequency within each row. Comparing the distribution with Table 2, FOREPBENCH
frequently has the functions AVERAGE and CONCATENATE which the seed dataset did not. This indicates that BooTSTRAP
GENERATOR creates samples diverse from the fewshot examples. Some trends remain consistent between both datasets, for
example VLOOKUP, INDEX, and MATCH being the most common functions for #N/A error.

to the contextual plausibility of spreadsheet content. As a result,
some unrealistic samples may persist in the dataset despite passing
automated filtering.

Ann-1vs.LLM  Ann-2vs.LLM  Ann-1vs. Ann-2
0.42 0.42 0.60

Table 4: Cohen’s Kappa agreement scores between human
annotators and LLM VALIDATOR.

Kappa

6.3 RQ3: Performance of Repair Task on
Synthetic and Seed Data

We evaluate the performance of the baseline excel formula repair
technique described in Section 4.1 on both FOREPBENCH and the
seed dataset. To ensure diversity in our evaluation, we selected four
representative LLMs spanning a range of model families, including
state-of-the-art proprietary large language models (i.e, Gpt-4.1,
Gpt-40) and open-weight models (i.e, Phi-3, Mistral), as well as
different architectural paradigms (transformer-based and mixture-
of-experts). Table 5 reports the results across the three execution-
based metrics described in Section 5.1, evaluated over both datasets
using different LLMs that power the baseline repair technique.

Overall, we observe that both the Execution Match and Can Exe-
cute scores are significantly lower across LLMs on the seed dataset
compared to FOREPBENCH, indicating that the FOREPBENCH is rela-
tively easier for the repair technique to handle which matches our
learning from the RQ 6.1 on difficulty level distribution. Upon fur-
ther analysis, we identify two primary reasons for this discrepancy:
(1) the faulty formulas in the seed dataset are generally more com-
plex, often involving deeper levels of nesting; and (2) the number
of edits required to transform the faulty formula into the correct
version is substantially higher.

For instance, consider a faulty formula from the manually anno-
tated seed dataset shown in Figure 3. This example contains nesting
of depth two and uses both VLOOKUP and MID functions. To repair

this formula, multiple non-trivial edits are required, including al-
tering the internal logic from MID(A : A, 38, 15) to simply A : A
within the VLOOKUP function, followed by additional transforma-
tions where the looked-up value is further modified to B1&” — .
Such repairs demand reasoning about user intent and understanding
of higher-level semantics, as the modifications involve significant
logic changes rather than isolated token-level corrections.

In contrast, examples from the synthetic dataset often require
fewer edits to achieve the correct formula, as illustrated in Figure 3.
In these cases, the internal logic embedded within the VLOOKUP
function typically remains intact, with only minor corrections or
additional function wrap-up are needed. Consequently, these re-
pairs are more straightforward for the model to handle, as they
involve localized changes rather than substantial semantic rewrites.
We also see that bigger GPT-4 series models are better at solving
the repair tasks in comparison to Phi-3 and Mistral suggesting more
layers and training data can help improve Excel formula repair task.

These findings suggest that while the baseline repair technique
is effective on FOREPBENCH, the BOOTSTRAP GENERATOR pipeline
may not fully capture the range of complexity observed in real-
world Excel formulas. Specifically, the synthetic instances from
FoREPBENCH tend to exhibit shallower nesting and require fewer
semantic transformations compared to the manually curated seed
dataset. Building on this insight, we propose that incorporating
an additional reviewer agent or a human-in-the-loop component
into the BooTSTRAP GENERATOR pipeline could help bridge this
gap. By comparing generated synthetic samples against real-world
instances and providing targeted feedback, the pipeline could itera-
tively generate more complex and diverse faulty formula instances
that better reflect real-world repair challenges.

6.4 RQ4: Cost of Dataset Generation

Table 6 summarizes the cost of generating the FOREPBENCH dataset
in terms of LLM API usage. For data generation, we issue a single
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LLM Dataset Origin Syntax Valid Can Execute Execution Match
FoREPBENCH 1.00 0.96 0.80
GPT-41 g d Dataset 0.98 0.65 0.41
FoREPBENCH 1.00 0.93 0.73
GPT-40 o d Dataset 0.96 0.63 0.35
Phi-3 FOREPBENCH 0.81 0.77 0.58
Seed Dataset 0.73 0.41 0.24
Mistral FOREPBENCH 0.78 0.76 0.51
Seed Dataset 0.67 0.37 0.19

Table 5: Performance of Baseline Repair Technique on FOREPBENCH and seed dataset across various LLMs.

LLM call per prompt to generate N candidate samples (where N =
25). From this pool, 1,095 samples contained executable formulas
with the correct error type, as automatically verified by Calc.ts. For
each of these accepted samples, we issue one additional LLM call
to assess semantic validity, resulting in a total of 1,154 LLM calls
(59 for generation and 1,095 for validation). This corresponds to an
average of approximately 2.09 LLM calls per accepted sample.

On average, each call consumes approximately 2,000 tokens,
yielding a per-sample generation cost of approximately $0.02°.
These results demonstrate that the BOOTSTRAP GENERATOR pipeline
is both scalable and cost-effective for generating large-scale formula
repair datasets.

Generation Calls Validation Calls Avg. Calls/Valid Sample
59 1,095 2.09
Table 6: LLM call breakdown for generating the FOREPBENCH
dataset. Out of 1,095 executable samples, 618 are accepted by
LLM VALIDATOR.

7 Discussion and Conclusion

In this work, we introduced a modular, low-supervision pipeline
for generating and validating synthetic Excel formula repair data,
resulting in the FOREPBENCH benchmark. Our BoOTSTRAP GENERA-
TOR method combines structured spreadsheet context with prompt-
based LLM sampling to produce realistic faulty formulas, which
are then filtered through a multi-stage validation process. This
process leverages automated execution checks and an LLM-based
reviewer agent that evaluates semantic plausibility. We also pro-
posed a prompt-based repair baseline system to evaluate model
performance on both synthetic and real (seed) data. Our investiga-
tion across four research questions uncovered key insights about
the characteristics, challenges, and utility of the generated data.
From RQ1, we found the synthetic dataset covers a broad range of
formula categories and function types, achieving greater diversity
than the manually curated seed dataset. RQ2 reinforced this, show-
ing that although synthetic data spans multiple function categories,
its error types and logical transformations are more localized and
less complex than those in seed data. RQ3 examined LLM-based
repair performance on both datasets, revealing a stark contrast:
models like GPT-40 and GPT-4.1 perform well on synthetic samples
(execution match rates up to 0.80), but accuracy drops significantly
on seed data, which often requires deeper nesting and multi-step

Shttps://llmpricecheck.com/openai/gpt-4o/

reasoning. This gap highlights a limitation of synthetic generation-
despite lexical and structural diversity, synthetic examples lack
the semantic complexity of real-world formulas that demand sub-
stantial rewrites or ambiguous intent interpretation. Conversely,
synthetic examples tend to preserve internal logic, requiring minor
corrections. RQ4 addressed the efficiency of data generation. With
only 1,154 total LLM API calls—59 for generation and 1,095 for
validation—we curated 618 high-quality samples, averaging just
over two calls which costs only $0.02 per accepted sample. This
demonstrates that large-scale, diverse datasets can be created with
minimal manual effort, adaptable to other structured domains with
simulated task-specific errors.

Despite these strengths, limitations remain. The LLM-based re-
viewer agent, while scalable, diverges from human annotators (Co-
hen’s kappa 0.25), reflecting the challenge of modeling subjective
plausibility. Reviewer judgments may misalign with human correct-
ness, especially in ambiguous or multi-step reasoning cases. Addi-
tionally, narrow context windows due to token limits can omit glob-
ally relevant spreadsheet information like distant dependencies or
multi-sheet references, limiting repair accuracy for complex scenar-
ios. Finally, our dataset focuses on single-sheet, English-language
spreadsheets, omitting collaborative, localized, and dynamic for-
mula contexts common in practice.

These findings suggest promising future directions: incorpo-
rating human-in-the-loop validation to improve fidelity; refining
reviewer agents via feedback fine-tuning or preference learning;
enhancing context selection with structure-aware retrieval to pri-
oritize semantically relevant spreadsheet regions; and extending
the pipeline to multi-sheet, shared, and localized spreadsheets to
broaden applicability.

Beyond benchmarking, FOREPBENCH can serve as a data augmen-
tation tool to improve formula understanding and repair models.
By simulating common spreadsheet errors at scale, the pipeline
offers a valuable resource for training and evaluating systems that
assist users in real-world spreadsheet environments. Our work
demonstrates that scalable, semi-automated generation of Excel
formula repair data is feasible and effective. While synthetic data
cannot fully replace human-curated examples, carefully filtered syn-
thetic samples can enhance model robustness and enable systematic
benchmarking. We hope FoREPBENCH will support future research
in end-user programming, intelligent assistants, and robust Excel
formula repair.
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